skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "MacMartin, Douglas_G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Stratospheric aerosol injection (SAI) would involve the addition of sulfate aerosols in the stratosphere to reflect part of the incoming solar radiation, thereby cooling the climate. Studies trying to explore the impacts of SAI have often focused on idealized scenarios without explicitly introducing what we call ‘inconsistencies’ in a deployment. A concern often discussed is what would happen to the climate system after an abrupt termination of its deployment, whether inadvertent or deliberate. However, there is a much wider range of plausible inconsistencies in deployment than termination that should be evaluated to better understand associated risks. In this work, we simulate a few representative inconsistencies in a pre-existing SAI scenario: an abrupt termination, a decade-long gradual phase-out, and 1 year and 2 year temporary interruptions of deployment. After examining their climate impacts, we use these simulations to train an emulator, and use this to project global mean temperature response for a broader set of inconsistencies in deployment. Our work highlights the capacity of a finite set of explicitly simulated scenarios that include inconsistencies to inform an emulator that is capable of expanding the space of scenarios that one might want to explore far more quickly and efficiently. 
    more » « less
  2. Abstract Climate change is a prevalent threat, and it is unlikely that current mitigation efforts will be enough to avoid unwanted impacts. One potential option to reduce climate change impacts is the use of stratospheric aerosol injection (SAI). Even if SAI is ultimately deployed, it might be initiated only after some temperature target is exceeded. The consequences of such a delay are assessed herein. This study compares two cases, with the same target global mean temperature of ∼1.5° C above preindustrial, but start dates of 2035 or a ‘delayed’ start in 2045. We make use of simulations in the Community Earth System Model version 2 with the Whole Atmosphere Coupled Chemistry Model version 6 (CESM2-WACCM6), using SAI under the SSP2-4.5 emissions pathway. We find that delaying the start of deployment (relative to the target temperature) necessitates lower net radiative forcing (−30%) and thus larger sulfur dioxide injection rates (+20%), even after surface temperatures converge, to compensate for the extra energy absorbed by the Earth system. Southern hemisphere ozone is higher from 2035 to 2050 in the delayed start scenario, but converges to the same value later in the century. However, many of the surface climate differences between the 2035 and 2045 start simulations appear to be small during the 10–25 years following the delayed SAI start, although longer simulations would be needed to assess any longer-term impacts in this model. In addition, irreversibilities and tipping points that might be triggered during the period of increased warming may not be adequately represented in the model but could change this conclusion in the real world. 
    more » « less